Novel Graft Material with New Protocol in GBR; Use in Sinus Augmentation Using a Lateral Window

Peter Fairbairn, Minas Leventis, Cretiss Vasiliadis, Robert Horowitz and Monish Bhoila

Department of Periodontology and Implant Dentistry, School of Dentistry, University of Detroit Mercy, Detroit, USA; Department of Oral and Maxillofacial Surgery, Dental School, University of Athens, Athens, Greece; Departments of Periodontics, Implant Dentistry, and Oral Surgery, New York University College of Dentistry, New York, USA

Abstract

Research showing the osteo-conductive nature and osteo-inductive potential of Calcium Phosphate particulate graft materials is widespread, but new research exhibiting the effect on improved angiogenesis has helped explain clinical outcomes. Thus we see up-regulation of the host response to bone regeneration resulting in a high percentage of host bone sooner, quality not merely quantity of the outcomes. Thus we see up-regulation of the host response to bone regeneration exhibiting the effect on improved angiogenesis.

Background and Aim

Background: The placement of dental implants in the posterior maxillary region is often hampered by the presence of the maxillary sinus and a reduced quantity of viable bone. Since the early 80s, when Dr. Hilt Tatum first described the procedure, sinus augmentation has been performed to increase the amount of available bone to enable implant placement. Numerous particulate bone grafting materials have been shown in many studies over the years to assist the host to regenerate bone by setting hard for improved stability of the site.

Aims: To evaluate the efficacy of a novel bi-phasic synthetic (allograft) particulate bone graft material consisting of Beta Tri-Calcium Phosphate and Calcium Sulfate which sets in-situ, in sinus augmentation using a lateral window approach.

Methods and Materials

In a series of ten patients requiring sinus augmentation with a residual host bone from 2mm – 6 mm in height, the exact same protocol was employed using the bi-phasic grafting material EthOss®, (Regenerated Ltd, Ilkey, UK). This protocol was to raise a full thickness flap and enter the sinus using the DASK® system (Dentium, Seoul, Korea) to safely create the Osteotomy in the lateral wall. The Scheiderian lining was then lifted using traditional hand instruments and the implant osteotomies created again using the the internal kit of the DASK system, for safety reasons. DIO (DIO implant systems, Busan, Korea) implants (4.5mm by 10 mm) were then placed along with the particulate graft and ISQ readings were taken (Ostell ISQ®, Göteborg, Sweden). The graft material was then used to seal the lateral window and a sterile gauze was used to compress the graft which subsequently set in situ.

Results

All the cases were successfully loaded. The case average ISQ reading (each case has an average of two readings, buccal and occlusal) was 42 at implant placement and at loading 10 weeks later was 74, which indicated a successful outcome in osseointegration and regeneration of new bone in the sinuses. All cases appeared radiographically sound and, as the graft material will be mostly resorbed, long term assessment can be conducted by using routine radiographs. It is expected that the material will be fully resorbed in 9-18 months dependent on the patient physiology. Due to the one stage protocol employed in the study it was not possible to take a core sample, although a core from a different two stage case showed 50% new host bone at ten weeks post-op.

Conclusions

The results of this study appear to be in line with other studies where b-TCP and CS have been used in sinus augmentation. The graft stability and bio-compatibility may have resulted in reduced post-operative morbidity described by the patients (none of them required any analgesic the following day). The ability of being able to use the self-hardening material to seal the “window” may possibly also have benefits in the procedure. The ability of the material to provide a stable scaffold, for host bone regeneration whilst itself being bio-absorbed, along with its osteo-inductive potential allowed for implant loading at about 10 weeks in all cases.

References